<noframes id="xvtvt"><ruby id="xvtvt"><strike id="xvtvt"></strike></ruby>

<p id="xvtvt"></p>
<pre id="xvtvt"><strike id="xvtvt"><b id="xvtvt"></b></strike></pre>
<noframes id="xvtvt">
    <ruby id="xvtvt"><strike id="xvtvt"><var id="xvtvt"></var></strike></ruby>
    <pre id="xvtvt"></pre>
    <track id="xvtvt"><strike id="xvtvt"><ol id="xvtvt"></ol></strike></track>

    <pre id="xvtvt"></pre>

    網站地圖關于我們

    查看相冊 View Gallery
    假如建筑自身可以生長?——可持續生物新材料探析第1張圖片
    Courtesy of The Living. ImageAlive: A New Spatial Contract for Multispecies Architecture by The Living

    生物技術和綠色科技:可持續建筑的新材料世界
    Biotechnology and Green Tech: A New Material World for Sustainable Architecture

    由專筑網邢子,小R編譯

    生物技術和材料科學的進步開啟了新的材料發展機會,這有可能從根本上改變建筑環境和自然界之間的聯系。建筑材料和施工占溫室氣體排放的11%。AEC行業可以在接下來的時間里為遏制氣候變化做出貢獻。對普通建筑材料的重新評估是很關鍵的步驟,可以生長、產生能量、自我修復的生物工程材料,是生物學和材料科學的下一個前沿領域,也可能是通往新型建筑的橋梁。盡管這些領域的創新離主流商業用途還很遠,但它有望極大地改變建筑環境的形象。

    用于建筑環境的活體材料是一個迅速擴大的研究領域,為一系列廣泛的目標服務,從減少碳足跡、優化資源利用、開發創新特性到加強碳封存;铙w建筑材料(LBMs)位于設計、材料科學、化學和生物工程的交叉點,包含微生物,并顯示出生物特性。下面的研究展示了LBMs材料如何改變建筑。


    以有機增長取代傳統生產

    在科羅拉多大學博爾德分校,活體材料實驗室研究了一種新的不含水泥的活體建筑材料,與混凝土不同,它完全可以回收。該團隊使用氰基細菌和類似于藻類的綠色微生物,利用二氧化碳和陽光來培養,并制造了一種有助于封存二氧化碳的生物水泥。利用細菌的指數式增長,研究人員培育出了構件,展示了一種新的潛在制造方法。這項技術在現實生活中已有應用,例如,一些公司正在通過在其產品中加入生物水泥來探索增強材料的使用。

    Advances in biotechnology and material science are opening new material opportunities, with the potential of fundamentally changing the connection between the built environment and the natural world. Building materials and construction account for 11% of greenhouse gas emissions. The AEC industry can contribute to curbing climate change in the following years, and the re-evaluation of commonplace building materials is one of the most critical steps. Bioengineered materials, which grow, produce energy, self-heal, are the next frontier in biology and material science and potentially a path towards a new kind of architecture. Although innovation in these fields is still far away from mainstream commercial use, it promises to dramatically change the image of the built environment.
    Living materials for the built environment is a rapidly expanding area of inquiry, serving a wide array of objectives, from reducing carbon footprints, optimizing the use of resources, developing innovative properties to enhancing carbon sequestration. Sitting at the intersection of design, material science, chemistry, and bioengineering, living building materials (LBMs) contain microorganisms and show biological properties. The following research showcases how LBMs could change the material with which architecture operates.

    Replacing Traditional Production with Organic Growth
    At the University of Colorado Boulder, the Living Materials Laboratory investigated a new cement-free living building material that, unlike concrete, is entirely recyclable. The team used cyanobacteria, green microorganisms similar to algae that use CO2 and sunlight to grow, and manufactured a bio cement that helps sequester CO2. Harnessing the exponential growth of bacteria, the researchers grew the building blocks, demonstrating a new potential manufacturing method. The real-life application of this technology is already here, as some companies are pushing forward the adoption of these enhanced materials by incorporating biocement in their products, for example.

    假如建筑自身可以生長?——可持續生物新材料探析第2張圖片
    Image © Andrew Nunes

    菌絲體是另一個可種植建筑材料的多產探究領域,因為基于菌絲體的材料具有良好的絕緣性能,阻燃且不產生有毒氣體。2014年,The Living公司創造了Hy-Fi,這是第一個由菌絲體磚塊制成的大型結構,可以在5天內生長完成。在美國宇航局,基于菌絲體的材料被確定為空間建筑的可行選擇,因為在需要將運輸材料的體積降到最低的情況下,這些材料有可能在現場被種植使用。


    自我修復材料,減少資源消耗

    由于混凝土占全球碳排放的近9%,許多研究工作的重點是尋找傳統混凝土的替代品,重新思考其生產過程或尋找減少需求的解決方案。在伍斯特理工學院,研究人員已經開發出一種自我修復的混凝土,使用一種酶將大氣中的二氧化碳轉化為碳酸鈣晶體,密封毫米級的裂縫并防止材料進一步損壞。與使用細菌進行的自我修復混凝土的實驗不同,這個過程更快,而且不會帶來任何安全問題。


    現實生活中的測試和建筑應用

    建筑環境中的生物技術研究項目匯集了諾森比亞大學的生物科學家和紐卡斯爾大學的建筑師、設計師和工程師,致力于開發生物技術,以幫助創造對環境有反應的建筑。研究的重點是生產活的工程材料,這些材料將代謝它們的廢物,幫助減少污染,使建筑過程更加有效,甚至產生能量。為了測試建筑規模的研究結果,該研究計劃在紐卡斯爾大學校園內建造了一個實驗性結構,復制一個家庭空間。在OME內,研究人員將對材料進行實驗,開發將家庭廢物轉化為熱量和能源的過程,同時測試新的外墻系統,并研究影響建筑的微生物組。

    Mycelium is another prolific area of inquiry for construction materials that can be grown, as materials based on mycelium have good insulation properties, are fire retardants and don’t produce toxic gasses. In 2014, The Living created Hy-Fi, the first large scale structure made of mycelium bricks, which could be grown in 5 days. At NASA, mycelium-based materials are investigated as a viable option for space architecture, precisely for the potential of growing them on-site, in a context where the volume of materials transported needs to be reduced to a minimum.

    Self-repairing materials for less resource consumption
    With concrete responsible for almost 9% of global carbon emissions, numerous research endeavours focus on finding alternatives to traditional concrete, rethinking its production process or finding solutions for decreasing the demand. At the Worcester Polytechnic Institute, researchers have developed a self-healing concrete, using an enzyme that transforms carbon dioxide in the atmosphere into calcium carbonate crystals, sealing millimetre-scale cracks and preventing further damage to the material. Unlike the experiments with self-healing concrete using bacteria, this process is faster and doesn’t pose any safety issues.

    Real-life testing and architectural applications
    The Hub for Biotechnology in the Built Environment is a research project bringing together bio-scientists from Northumbria University and architects, designers and engineers from Newcastle University working to develop biotechnologies that would help create buildings responsive to their environment. The research focuses on producing living engineered materials that would metabolize their waste, help reduce pollution, make construction processes more efficient and even generate energy. To test the findings at building scale, the research initiative built an experimental structure within the Newcastle University campus that would help replicate a domestic space. Within OME, researchers will experiment with materials, develop processes to convert household waste into heat and energy, test new façade systems and influence the building’s microbiome.

    假如建筑自身可以生長?——可持續生物新材料探析第3張圖片
    Image © Assia Stefanova

    北卡羅來納大學夏洛特分校的綜合設計研究實驗室開發了一個可適應的微藻外墻系統,通過集成的光生物反應器改善室內空氣質量并生產可再生能源。通過生物變色窗,空氣被引入立面系統內,海藻產生的氧氣被引入建筑的HVAC系統。新鮮的水藻被定期引入系統,而含碳的水藻則沉在底部,被轉移到一個將其轉化為生物燃料的組件中。該系統已被調整和開發,以適應商業用途。

    The Integrated Design Research Lab at the University of North Carolina Charlotte developed an adaptable microalgae façade system that improves indoor air quality and produces renewable energy through integrated photobioreactors. With the Biochromic Window, the air is introduced within the façade system, and the oxygen produced by the algae is introduced into the HVAC system of the building. Fresh algae are introduced regularly into the system, and the carbon-loaded ones sink at the bottom and are transferred into a component that converts them into biofuel. The system has been adapted and developed for commercial use.

    假如建筑自身可以生長?——可持續生物新材料探析第4張圖片
    Image © Maja Wirkus

    這些來自廣泛研究領域的少數例子描繪了一個可持續建筑材料行業的全面形象。進一步說,需要更多的研究來評估安全和生物污染等問題。此外,這些新材料還必須贏得公眾輿論的支持,因為公眾通常不愿意接受與細菌共存的世界。工程生物材料領域仍處于早期階段,從實驗室研究到商業可行性還有很長的路要走。然而,這項研究開辟了通往材料新世界的道路,并有望將建筑可持續發展提升到新高度。

    These few examples from an expansive research field paint a comprehensive image of what a sustainable construction material industry could look like. Going further, more research is required to evaluate issues such as safety and biocontamination. In addition, these new materials would have to win over public opinion, which is usually reluctant towards the bacterial world. The field of engineered living materials is still in its early days, and there is a long way to go from laboratory research to commercial viability. However, this research opens the path towards a new material world and a new level of sustainability in architecture.

    假如建筑自身可以生長?——可持續生物新材料探析第5張圖片
    Image © Maja  Wirkus

    【專筑網版權與免責聲明】:本網站注明“來源:專筑網”的所有內容版權屬專筑網所有,如需轉載,請注明出處

    專于設計,筑就未來

    無論您身在何方;無論您作品規模大;無論您是否已在設計等相關領域小有名氣;無論您是否已成功求學、步入職業設計師隊伍;只要你有想法、有創意、有能力,專筑網都愿為您提供一個展示自己的舞臺

    投稿郵箱:submit@iarch.cn         如何向專筑投稿?

    掃描二維碼即可訂閱『專筑

    微信號:iarch-cn

    登錄專筑網  |  社交賬號登錄:

     匿名

    沒有了...
    評論加載中,請稍后!

    建筑 (12361 articles)


    材料 (232 articles)


    新材料 (13 articles)


    可持續 (36 articles)


    菌絲體 (5 articles)



    国产AV永不封网,安斋らら神之乳在线播放,无码人妻视频一区二区三区
    <noframes id="xvtvt"><ruby id="xvtvt"><strike id="xvtvt"></strike></ruby>

    <p id="xvtvt"></p>
    <pre id="xvtvt"><strike id="xvtvt"><b id="xvtvt"></b></strike></pre>
    <noframes id="xvtvt">
      <ruby id="xvtvt"><strike id="xvtvt"><var id="xvtvt"></var></strike></ruby>
      <pre id="xvtvt"></pre>
      <track id="xvtvt"><strike id="xvtvt"><ol id="xvtvt"></ol></strike></track>

      <pre id="xvtvt"></pre>

      <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <蜘蛛词>| <文本链> <文本链> <文本链> <文本链> <文本链> <文本链>